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Thermodynamically consistent relations
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Experimental data associated with plastic deformations indicate that the temperature is
less than that predicted from dissipation based on plastic work. To obtain reasonable
correlation between theoretical and experimental results, the plastic work is often
multiplied by a constant b. This paper provides an alternative thermodynamic framework
in which it is proposed that there is an additional internal energy associated with
dislocation pile-up or increase in dislocation density. The form of this internal energy
follows from experimental data that relates flow stress to dislocation density and to
equivalent plastic strain. The result is that b is not a constant but a derived function.
Representative results for b and temperature as functions of effective plastic strain are
provided for both an uncoupled and a coupled thermoplastic theory. In addition to
providing features that are believed to be representative of many metals, the formulation
can be used as a basis for more advanced theories such as those needed for large
deformations and general forms of internal energy.

Keywords: Please supply a minimum of three to a maximum of six keywords
Q2
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1. Introduction

Experimental observations indicate that many metals display a very specific
correlation between temperature and the amount of plastic work performed on the
sample. An elementary argument suggests that the increase in the temperature
should be proportional to the plastic work but experimental observations always
appear to be lower than the prediction. Therefore, it has become common practice
to introduce a factor, b, to provide a better correlation between plastic work and
predictions of temperature (Taylor & Quinney 1933; Zehnder 1991; Hodowany
et al. 2000). An extensive survey is provided by Macdougall (2000).

Normally, it is assumed that b is constant. However, Hodowany et al. (2000)
provide experimental data to demonstrate that such an assumption is not valid.
These authors (Rosakis et al. 2000) have since provided a systematic,
thermodynamical development of a theory in which b is a rationally-derived
function.
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Here we provide a similar unified framework with a slightly different starting
point. The basic premise of this work is that strain hardening is a result of
dislocation pile-up or increase in dislocation density. Furthermore, the
dislocation density saturates at a certain value beyond which the material
behaves as if it is perfectly plastic. An alternative approach is to use effective
plastic strain as a history variable but a simple transformation renders these two
approaches equivalent. In fact there is a wide range of choices of history variables
and history functions that allow for matching theoretical with experimental data.
One of the major objectives of the current development is to provide a generic
method for developing plasticity models under the assumption that flow stress
and temperature measurements are available as experimental data.

First, in §2, we introduce the basic structure in a format that is closely related
to existing uncoupled formulations. The internal energy is postulated as a sum of
three separable functions involving entropy, elastic strain and internal variables
related to plasticity. The form of the evolution functions for plastic strain and
dislocation density are left arbitrary and the restriction of the dissipation
inequality is used to suggest the development of a yield function. This procedure
is somewhat at odds with the more conventional approach of postulating a yield
function that depends on conjugate stresses and then deriving evolution
functions using associativity. The reason for the current approach is to merely
emphasize the point that a restriction such as the choice of a convex yield surface
is not necessary based on the dissipation inequality, and that the selection of
evolution functions can be based on experimental data. Of course, the two
approaches are equivalent under a suitable assumption. The section concludes
with the definition of the parameter b that is taken to be a constant in many
numerical simulations.

In §3, we make several simplifying assumptions that provide an elementary
theory closely relayed to the von Mises formulation that is widely used. In
particular, a special form is assumed for the portion of the internal energy
associated with dislocation pile-up. The result is that b becomes a derived
function that provides basic features often seen with experimental data. The
formulation can be easily incorporated with most existing computational
algorithms but, more importantly, modifications to the model can be easily
made to provide correlations with experimental data. The theory is summarized
in terms of dimensionless variables in §4. An additional term is included in the
dislocation internal energy and representative results in the form of plots are
given to show essential features of the model.

Section 5 provides a coupled theory. The uncoupled formulation is
generalized in a rather conventional engineering manner by introducing a
thermal strain and by assuming that this strain and the elastic and plastic
material parameters depend on (specific) entropy. However, the entropy part of
the internal energy is assumed to remain uncoupled. This has the desirable
effect of allowing the temperature to be considered as the sum of two terms, an
‘entropy’ temperature and an additional temperature that is shown to be
insignificant. The result is a significant simplification to the coupled theory.
Representative results are presented under the assumption that elasticity and
plasticity parameters decay exponentially with temperature. Again, illustrative
plots are provided.

The most significant aspects of the formulation are summarized in §6.
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2. Plasticity

(a ) Basic equations for uncoupled thermal effects

To retain the utmost simplicity, deformations will be considered infinitesimal so
there is no need to differentiate among the various forms of stress, strain and their
rates.

It is quite possible that a material will have been work-hardened, partially
annealed, or loaded previously with the result that some initial plasticity exists.
Then there is no way of knowing what the initial yield stress should be without an
experimental measurement. However, it is known that dislocation pileups can be
correlated with initial yield stress and dislocation density, rd, can be measured
microscopically. Therefore, it might be more meaningful to use dislocation density
rather than effective plastic strain as an internal variable with the understanding
that the initial value of rd may not be zero. Furthermore, with large plastic strain,
the dislocation density asymptotically approaches a saturation level, rs

d. For
convenience we define a dimensionless dislocation parameter, ~rdZrd=rd

s , which
will be used in the subsequent development.

Dislocation pileups might also be interpreted as an indicator of stored internal
energy that can be recovered when a metal is heat treated. Therefore, as primary
variables, we choose the total strain, e, the plastic strain, ep, dislocation density,
~rd, and the entropy, h. We assume the internal energy, U, per unit volume is a
function of these variables

U ZUðh; e; ep; ~rdÞ: ð2:1Þ
With the assumptions of no heat source and no heat flux, the first law of
thermodynamics reduces to

_U Zs : _e; ð2:2Þ
in which s denotes the stress, and a superposed dot denotes a derivative with
respect to time. The use of the chain rule results in

T _hZ sK
vU

ve

� �
: _eCDP T h

vU

vh
; ð2:3Þ

in which T is the temperature and DP, the dissipation power, is defined by

DP ZK
vU

vep : _epK
vU

v~rd
_~r
d
: ð2:4Þ

The Clausius–Duhem form of the second law of thermodynamics is the inequality
T _hR0 for all strain rate. With the use of the first law and (2.3), the second law
implies that

sZ
vU

ve
DPR0; ð2:5Þ

and the first law reduces to
T _hZDP: ð2:6Þ

As additional constitutive relations, we define the stress, sp, conjugate to plastic
strain and the stress, sd, conjugate to dimensionless dislocation density to be

sp ZK
vU

vep sd Z
vU

v~rd
: ð2:7Þ
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The difference in sign for the two stress variables provides conventional definitions
later in the development. The dissipation power becomes

DP ZP PKsd _~r
d

P P hsp : _ep; ð2:8Þ
in whichPP denotes the plastic power.We emphasize the point that the dissipation
power is not equal to the plastic power.

A conventional approach is to assume that the dependence of U on strain
occurs only as the difference of the total and plastic strains (elastic strain), or

Uðh; e; ep; ~rdÞZUðh; ee; ~rdÞ ee Z eKep: ð2:9Þ
The implication of this restriction and (2.7) is that spZs

Next, to provide the framework for an uncoupled formulation, we postulate
that the internal energy is separable into parts that involve the entropy, the
elastic strain, and the dislocation density

Uðh; ee; ~rdÞZUhðhÞCUeðeeÞCUrð~rdÞ; ð2:10Þ
in which the subscripts on the right side are used to indicate the independent
variable for the respective contributions.
(b ) Entropy contribution

For the entropy contribution to the internal energy, we assume the classical
form of

UhðhÞZ cvT0½eðh�h0Þ=c vK1�: ð2:11Þ
The material constant, cv, is the heat capacity at constant volume, and h0 and T0

are reference values for entropy and temperature, respectively. It follows that

T ZT0e
ðh�h0Þ=c v ; ð2:12Þ

and
T _hZ cv _T : ð2:13Þ

If we work with T rather than h, we obtain the entropy and the thermal part of
the internal energy as

hZh0Ccvln
T

T0

U �
h ðTÞZ cvðTKT0Þ: ð2:14Þ

U �
h is not a potential function since vU �

h=vTsh and, therefore, many choose not
to use such a function.

Alternatively, we can perform a Taylor expansion on the exponential and
retain only the lowest terms to obtain

UhðhÞZT0 ðh� h0ÞC
1

2cv
ðh� h0Þ2 C/

" #

T ZT0 1C
1

cv
ðh� h0ÞC/

" #
9>>>>>=
>>>>>;
: ð2:15Þ

As long as the linear relationship is satisfactorily accurate, we can think of h as
merely a scaled value of temperature.
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(c ) Evolution of plasticity

To describe the development of plastic deformation, we construct the
mathematical model through the use of evolution equations

_ep Z _lmðh; ee; ~rdÞ _~r
d
Z _lm dðh; ee; ~rdÞ; ð2:16Þ

in which l is a monotonically increasing plasticity parameter and the evolution
functions, m and md, are assumed to depend on the same parameters as U. Since
h is uniquely related to T, the dependence on h can be replaced with T. The
evolution function md serves to connect the development of plastic strain to the
increase in dislocation density.

If an ‘effective’ stress, Seff, and an ‘effective’ dislocation density, �S
d
, are

defined by
Seff Zsp : m �S

d Zsdm d; ð2:17Þ
it follows from (2.8) that the plastic power and dissipation power are

P P Z _lSeff DP Z _lSD SDh ½SeffK�S
d�; ð2:18Þ

in which SD is defined to be the ‘effective’ stress of dissipation. A
thermodynamically consistent formulation must ensure that the dissipation
power is positive semi-definite as indicated by (2.5). To this end one can define a
yield function F based on the expression for the dissipation power to be

F ZSDKFa; ð2:19Þ
in which Fa is an additive function (which could be a constant). The usual
restrictions are made that plasticity does not occur if F!0, the state FO0 is
not allowed, and plastic deformation may occur only when FZ0 in which case
SDZFa and DPZ _lFa. The required inequality is satisfied if the restriction is
imposed that FaR0.
(d ) Implication for predictions of temperature

For constant cv, (2.6) and (2.13) indicate that the rate of increase of
temperature is proportional to the dissipation power. It has become customary,
primarily with regard to computational methods (e.g. Camacho & Ortiz 1997), to
express the rate of increase of temperature as proportional to a factor, b, times
the plastic power so that, by inference

bh
cv _T

P p Z
DP

P P
Z

SD

Seff
Z 1K

�S
d

Seff
: ð2:20Þ

Therefore, b involves a ratio of effective stresses, and only under additional, and
very restrictive, assumptions will b be a constant.
3. A specific model

(a ) Preliminary comments

At this point, we begin to make additional simplifying assumptions in order to
make specific conclusions concerning the form of the function b and the resulting
RSTA 20051585—24/8/2005—21:58—AMALI—163388—XML RSA – pp. 1–25
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implications concerning predictions for temperature. The objective is to be as
straightforward as possible. Then, alternative formulations can be easily
developed if some of the assumptions are changed.

(b ) Elastic contribution

If isotropic linear elasticity is assumed, then the expression for the elastic
strain energy is

UeðeeÞZ 1

2
½3Bee : P s : ee C2Gee : P d : ee�; ð3:1Þ

where B and G denote the bulk and shear modulus, respectively. The spherical
projection, P s, and deviatoric projection, P d, are defined by

P s Z 1

3
i5i P d Z IKP s; ð3:2Þ

with i the second-order identity, and I the symmetric fourth-order identity
tensors. The constitutive equations for stress and plastic conjugate stress become

sZsp Z 3BP s : ee C2GP d : ee: ð3:3Þ
For the moment, we leave open the form of the dislocation energy function.

(c ) von Mises plasticity

If sdv denotes the stress deviator, then von Mises plasticity is obtained by
choosing the first evolution function of (2.16) to be

m Z

ffiffiffi
3

2

r
sdv

ðsdv : sdvÞ1=2
: ð3:4Þ

The result is that

Seff Z
�

3

2
sdv : sdv

�1=2
_lZ _�e

ph
ð _ep : _epÞ1=2

ðm : mÞ1=2
Z

�
2

3
_ep : _ep

�1=2
: ð3:5Þ

Note that the effective plastic strain, �e p, and l can be used interchangeably.
A von Mises yield function, F vM, is typically chosen to be of the form

F vM ZSeffKsy; ð3:6Þ
with the function sy denoting the flow stress. It is observed that the flow stress of
most metals varies as the square root of dislocation density (Follansbee & Kocks
(1988)), or

sy Zs
y
0 Cs

y
h s

y
h Zsy

m

ffiffiffiffiffi
~rd

q
: ð3:7Þ

We interpret s
y
0 to be the yield stress associated with a perfectly annealed

condition (~rdZ0) and s
y
m to be the maximum possible enhancement to the

annealed yield stress that occurs when ~rdZ1.

(d ) Strain hardening

For metals, the hardening part of the yield stress is also often given as a
function of effective plastic strain as follows

sy Zs
y
0 Cs

y
h s

y
h Zsy

mtanh z�e p; ð3:8Þ
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with the material parameter z chosen to provide a fit to experimental data. Of
course, alternative hardening functions can be chosen. The initial yield and
maximum enhancement stresses have the same connotations as used in (3.7).
The two forms for sy given in (3.7) and (3.8) yield

tanh z�e p Z
ffiffiffiffiffi
~rd

q
: ð3:9Þ

By taking a derivative, utilising the equivalence of l and �e p, and using the
definition of m d based on (2.16), we obtain

m d Z 2z

ffiffiffiffiffi
~rd

q
ð1K~rdÞ: ð3:10Þ

If desired, this function can be transformed to one that depends on effective
plastic strain.

(e ) Internal energy associated with dislocations

Here, a specific form for the contribution to the internal energy designated as
Ur in (2.10) is proposed. Rosakis et al. (2000) provide a plot of experimental data
relating this term (called stored energy of cold work) to effective plastic strain for
aluminum 2024-T351. The data suggest that for the given range of effective
plastic strain, a linear assumption would be entirely reasonable. However, it also
seems plausible to assume that with large strain this energy should saturate to a
limiting value. Since the hyperbolic tangent is linear for small values of its
argument, we use (3.9) and suggest that the following simple form might be
appropriate for this material and, perhaps, for other materials

Ur ZCd

ffiffiffiffiffi
~rd

q
; ð3:11Þ

in which Cd is a material constant. It follows from (2.7) that the conjugate
dislocation stress is

sd Z
Cd

2
ffiffiffiffiffi
~rd

p ; ð3:12Þ

and (2.17) provides the ‘effective’ dislocation density

�S
d Z zCdð1K~rdÞ: ð3:13Þ

The use of (2.18), (2.19), (3.6) and (3.7) yields the following expression for the
additive part of the yield function

Fa ZsyK�S
d Zs

y
0 Csy

m

ffiffiffiffiffi
~rd

q
KzCdð1K~rdÞ: ð3:14Þ

The dissipation requirement that Fa be positive imposes the inequality s
y
0 RzCd.

In general, whenever values for the material constants are selected, the
inequality on Fa should be checked for all ~rd.

(f ) Implications for temperature predictions

The use of F vMZ0 and (3.6) implies SeffZsy so that (2.20) reduces to

bZ
syK�S

d

sy Z
Fa

sy ; ð3:15Þ
RSTA 20051585—24/8/2005—21:58—AMALI—163388—XML RSA – pp. 1–25
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in which (3.14) has been used. The inequality, FaR0, ensures that 0%b%1, as
should be expected. If the yield stress and b are available as functions of effective
plastic strain from experimental data, the effective stress �S

d
as a function of

effective plastic strain (or dislocation density) can be determined. One can then
work back to derive the corresponding forms for the conjugate stress and internal
energy. On the other hand, if we accept the assumed form for the internal energy
given in (3.11), then

bZ 1K
zCdð1K~rdÞ
s
y
0 Cs

y
m

ffiffiffiffiffi
~rd

p : ð3:16Þ

If the dislocation state is saturated ð~rdZ1Þ, then bZ1. The other limiting case of
the perfectly annealed state ð~rdZ0Þ yields the value

b0 hbj~r dZ0 Z 1K
zCd

s
y
0

: ð3:17Þ

The inequality s
y
0 RzCr implies that 0%b0%1. If experimental data for Ur are

not available, but b0 is experimentally available, then (3.17) can be used to
obtain Cd. In order to provide plots of representative results in the next section a
value for b0 has been assumed.
(g ) Associativity

With the use of (3.5), (3.12) and spZs, the yield function of (3.6) can be
expressed in terms of the conjugate stresses

F vMðsp; sdÞZSeffKs
y
0 Ksy

m

Cd

2sd
: ð3:18Þ

The evolution equations of (2.16) are partially associated in the sense that

m Z
vF vM

vsp m ds
vF vM

vsd
: ð3:19Þ

However, the symmetry of the tangent tensor depends only on the satisfaction of
the first relationship so the fact that the inequality holds for m d is not considered
to be detrimental to the theory.
(h ) Dislocation internal energy, plastic work and dissipation

Because of the uncoupled forms for the energy and the yield function, we
can perform integrations to obtain explicit expressions for the dissipation and the
plastic work. The plastic work, WP, and dissipation, D, are defined as the time
integrals of the plastic power and dissipation power, respectively

W P Z

ð
P P dt D Z

ð
DP dt: ð3:20Þ

Recall that sZsp because of the restricted form for the internal energy. With the
use of (2.8), (2.17), (2.18), (3.5) and the von Mises yield condition (3.6), various
integral expressions for the plastic work are obtained as follows

W P Z

ð
Seff dlZ

ð
sy dlZ

ð
½sy

0 Csy
mtanh z�e p�d�e p: ð3:21Þ
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The latter one yields

W P Zs
y
0 �e

p C
s
y
m

z
lnðcosh z�e pÞ: ð3:22Þ

With regard to the dissipation, the first of (2.8) becomes simply

D ZW PKUr; ð3:23Þ
which states that the dissipation is simply the difference between the plastic work
and the dislocation internal energy.

The uncoupled formulation leads to specific forms for plastic work and total
dissipation so it is appropriate here to speak of dissipation rate and rate of plastic
work rather than dissipation power and plastic power, respectively. This
coalescence of terminology does not hold in general.
(i ) An evolution difficulty

Although the theory developed so far is complete, there is one difficulty that
arises when the model is implemented numerically. The problem is that the
evolution function m d given in (3.10) is zero when the dislocation density is zero,
and if deformation begins at an annealed state, there is no way for the dislocation
density to evolve unless m d is artificially assigned a small, positive initial value.
Here we show that a simple change of variable can rectify the situation. Let

r�Z
ffiffiffiffiffi
~rd

q
: ð3:24Þ

Then
s
y
h Zsy

m r � tanh z�e p Z r � : ð3:25Þ
Consequently, we obtain

_r�Zm d� _l; ð3:26Þ
where

m d� Z zð1Kr�Þ: ð3:27Þ
Now the evolution function m d� is not zero if the initial value of r� is zero, and
the evolution of r� ceases as r� approaches the saturation value of unity. We
continue to utilise the dislocation density in our formulation but for numerical
calculations, the transformation to the new variable may be more useful.
(j ) Rate effects

There are numerous methods for combining strain-rate effects with plasticity.
These include: (i) the overstress model of Perzyna (1966) in which the plastic
strain rate depends on the amount an effective stress exceeds the yield stress, (ii)
the addition of a strain obtained from a rate-dependent constitutive equation
similar in form to that of plasticity but with _l replaced with a material constant,
(iii) the use of a yield function that depends on either total strain rate (Rubin
1982) or plastic strain rate (Di Melfi & Kramer 1980), (iv) and the addition of a
viscous stress. Since we are interested only in providing a basic framework in a
thermodynamical setting, we choose one that appears to be widely used, namely;
modify the yield function to include plastic strain rate. Specifically, we do this by
changing the hardening part of the flow stress through a positive function, g, to
RSTA 20051585—24/8/2005—21:58—AMALI—163388—XML RSA – pp. 1–25
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reflect the enhancement of yield with plastic strain rate as follows

syð�e p; _�e
pÞZs

y
0 Cs

y
h ð�e

p; _�e
pÞ s

y
h Z sy

m½1Cgð _�e pÞ�tanh z�e p gð0ÞZ 0: ð3:28Þ

The initial-value restriction is placed on g so that the formulation reverts to the
existing one when the effective plastic strain rate is zero.

The rate-independent formulation for dissipation power and plastic power
continue to hold with this modified form of the flow stress. If, for example, a path
of constant strain rate is followed, one merely replaces sm

y with the new constant
s
y
m½1Cgð _�e pÞ� in the expression for b given in (3.16). The result is that strain rate

can only increase b with the inequality 0%b%1 always satisfied. If warranted by
experimental data or microstructural arguments, the parameters s0

y and Cd could
be allowed to depend on strain rate as well.

We will not pursue strain-rate effects any further except to say that most
paths have variable strain rate. Also, for modern flow-stress models that reflect
path dependence with respect to strain-rate (Chen & Gray 1966; Follansbee &
Kocks 1988), explicit forms for plastic work and total dissipation do not exist so
that it is then incorrect to refer to plastic power and dissipation power as rates of
plastic work and dissipation, respectively.

(k ) Concluding comments

In this section we have provided a small, but important, extension to the
elementary model of von Mises plasticity. The new contribution is a proposed
form for an uncoupled addition to the internal energy that depends on dislocation
density. The result provides a logical way to describe the b-effect where b is
derived as a function of deformation rather than being assumed constant. The
result yields particularly simple formulas for determining temperature under
adiabatic conditions. If the assumed form for internal energy proves to be
inadequate for application to a specific material, the elementary framework that
is provided allows a user to easily make modifications.

For example, there are experimental data that indicate b may initially
decrease from a value close to unity at zero dislocation density, and then increase
with a monotonic increase in effective plastic strain. In fact for an annealed
copper, it is plausible to argue that the beginning value for b should be one. It is
rather straightforward to show that such a feature is exhibited by selecting an
internal energy contribution of the form ð~rdÞ3=2 rather than the square root of the
dislocation density used in the illustrative development.

In §4, we recapitulate the equations in dimensionless form with this extra term
included. Sample plots are then provided to illustrate the general features of the
formulation.
4. Temperature predictions based on the uncoupled theory

(a ) Dimensionless variables

It is good practice from both theoretical and numerical viewpoints to introduce
dimensionless variables which will be denoted with an overscribed tilda, a
notation already used in connection with dislocation density. We use the process
of defining dimensionless variables also as an opportunity to summarize the set of
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governing equations. Since the theory is rate independent, there is no need to
introduce a dimensionless time.First, we define dimensionless entropy and
temperature

~hZ
hKh0

cv
~T Z

TKT0

T0

: ð4:1Þ

We choose the reference temperature to be T0Z300 K and the reference entropy,
h0, is unspecified. Next, we divide all stress-related variables by the initial yield
stress to obtain corresponding dimensionless terms

~sZ
s

s
y
0

~sd Z
sd

s
y
0

~S
eff

Z
S eff

s
y
0

~�S
d
Z

�S
d

s
y
0

~S
D
Z

SD

s
y
0

~C d Z
Cd

s
y
0

~B Z
B

s
y
0

~G Z
G

s
y
0

~sy
m Z

s
y
m

s
y
0

~sy Z
sy

s
y
0

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

: ð4:2Þ

The dimensionless entropy and elastic internal energies are

~Uh Z
UhðhÞ
s
y
0

Z
1

r y
c
½e~hK1�

~U e Z
UeðeeÞ
s
y
0

Z 1

2
½3 ~Bee : P s : ee C2 ~Gee : P d : ee�;

ð4:3Þ

in which we have introduced the ratio of the initial yield stress to a thermal
reference stress

r y
c Z

s
y
0

cvT0

: ð4:4Þ

Two contributions are now assumed for the dislocation internal energy; the first
term is the form suggested in (3.11) and, as shown later, the second term
provides more flexibility in an attempt to have the function b reflect features
exhibited by experimental data

~U r Z
Urð~rdÞ
s
y
0

Z ~C d1ð~rdÞ1=2C ~C d2ð~rdÞ3=2: ð4:5Þ

Dimensionless forms of plastic power and dissipation power given in (2.18)
become

~P
P
h

P P

s
y
0

Z _l ~S
eff ~D

P
h

DP

s
y
0

Z _l ~S
D ~S

D
Z ~S

eff
K~�S

d
: ð4:6Þ
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Figure 1. Dimensionless yield stress as a function of effective plastic strain.

H. L. Schreyer and P. J. Maudlin12

ARTICLE IN PRESS

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588
(b ) Representative plots

The hardening rule for flow stress from (3.8) and (3.9) becomes

~sy Z 1C ~sy
h ~sy

h Z ~sy
m

ffiffiffiffiffi
~rd

q
Z ~sy

mtanh z�e p: ð4:7Þ

The effect of various choices of z for describing the hardening function is
illustrated in figure 1. Large values for z correspond to rapid hardening with an
increase in effective plastic strain.

With the use of (2.7), (2.18), (3.9) and (3.10), the effective dislocation density
becomes

~�S
d
Z z½1Ktanh2z�e p�½ ~C d1C3 ~C d2tanh

2z�e p�; ð4:8Þ
while (3.14) and (3.15) yield the following expression

bZ
~Fa

~sy
~Fa h ~syK~�S

d
; ð4:9Þ

where ~Fa is the additional part of the yield function, in dimensionless form. If b0
and z are considered prescribed values, then the parameter ~C d1 must be chosen
to satisfy

~C d1 Z ð1Kb0Þ=z: ð4:10Þ
Plots of b showing the effects of dimensionless material parameters are given in
figures 2–4. First, we set ~C d2Z0 so only the effect of a dislocation internal
energy of the form ~U rZ ~C d1ð~rdÞ1=2 is considered. The effect of z on b for ~sy

m is
shown in figure 2a while the effect of ~sy

m on b for zZ8 is given in figure 2b. As
expected, b increases monotonically with effective plastic strain from the initial
value b0 to the maximum value of 1.

Next, the effect of dislocation internal energy of the form ~U rZ ~C d2ð~rdÞ3=2 is
illustrated. It is possible to find the equivalent plastic strain at which the
minimum value for b occurs and then choose ~C d2 to satisfy a prescribed
minimum value obtained from experimental data. Instead, the following
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expression for ~C d2, selected in an ad hoc manner, is used

~C d2 Z
10~sy

m

zð1C10~sy
mÞ

: ð4:11Þ

This choice, which provides approximately the same minimum value for b for a
wide range of cases, is used for all examples where ~C d2 is not zero. We emphasize
that the relation (4.11) is chosen merely to provide general features of the model;
experimental data may require a substantially different form. Figure 3 provides
plots of b with the initial value b0Z1 with the result from (4.10) that ~C d1Z0.
Only variations in z are shown as very little change with ~sy

m is observed. The
basic feature is a reduction from the initial value to a minimum and then an
increase back to unity as the effective plastic strain becomes large.
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Figure 3. Plot of b versus �ep for b0Z1:0ð ~Cd1Z0Þ and ~Cd2 given by (4.11).
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Figure 4. Plot of b versus �ep for b0Z0:75 with ~Cd1 and ~Cd2 given by (4.10) and (4.11), respectively.
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Finally, figure 4 shows representative distributions of b when both ~C d1 and
~C d2 are non-zero and given by (4.10) and 4.11), respectively, with b0Z0.75.
Again, there is very little change with ~sy

m so such a plot is not given.
If experimental data reflect an even richer structure for b then the form for ~Ur

must be altered from that used here (Rosakis et al. 2000).
With b as a known function, we use (2.18), (2.20), (3.5), (4.4) and the yield

condition SeffZsy to obtain
_~T Zbr y

c ~s
y _�e

p
: ð4:12Þ

A simple integration algorithm is all that is needed to obtain temperature as a
function of inelastic plastic strain. We see that a key factor in determining how
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Figure 5. Dimensionless temperature versus effective plastic strain. (a) b0Z0:5 and ~Cd2Z0.
(b) b0Z0:75 with ~Cd1 and ~Cd2 given by (4.10) and (4.11), respectively.
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rapidly temperature increases with plastic deformation is the dimensionless
material parameter r y

c . Values of r y
c are given in table 1 for some typical

materials. It appears that the inequality 0.1!r y
c !0.9 includes the majority of

cases.
An upper bound for temperature predictions is obtained simply by choosing

bZ1 and replacing tanh z�e p with unity (essentially using the maximum value of
the flow stress)

~T
ub

Z r y
c ð1C ~sy

mÞ�e p: ð4:13Þ

With r y
c Z0:5 and ~sy

mZ0:5, plots of temperature obtained from (4.12) and the
upper bound given by (4.13) are shown in figure 5a for b0Z0.5 with ~C d2Z0, and
in figure 5b for b0Z0.75 with ~C d2 obtained from (4.11).
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5. Coupled thermal and plasticity effects

(a ) Basic formulation

We have considered so far an uncoupled thermo-mechanical theory that provides a
very simple relationship for estimating increases in temperature. However, most
material moduli depend on temperature so they are actually functions. If this
dependence is taken into account, the result is a coupled theory thatweconsider next.
In particular, we are interested in the implications of the presence of the dislocation
internal energy.For the sake of simplicity and practical utility,we continue to eschew
generality. Even so,we believe that the formulation inherently provides guidelines as
to how a more general theory might be developed if warranted. Therefore, we do not
consider anisotropy, large strains, large excursions in temperature and complex
material dependence on temperature. However, even with these restrictions, the
theory may reflect general trends that are physically meaningful.

We start the development of a consistent theory by modifying the uncoupled
formulation and postulate a form for the internal energy that is slightly more
general than the previous form

Uðh; ee; rdÞZUhðhÞCUeðh; eeÞCUrðh; rdÞ: ð5:1Þ
We retain the form of (2.11) for the entropy internal energy by assuming the
parameter cv remains constant. We allow the elastic and dislocation internal
energies to depend on entropy with specific forms to be given later. We
decompose the temperature into two parts as follows

T ZThCTa Th Z
vUh

vh
ZT0e

ðhKh0Þ=c v Ta Z
vUe

vh
C

vUr

vh
: ð5:2Þ

We assume that the additional temperature is insignificant in comparison with
the entropy temperature, i.e.

Ta/Th or TzTh: ð5:3Þ
Now, the first of (2.14) can be used to express entropy in terms of temperature so
that the elastic and dislocation density part of the internal energies can be
expressed equally well as functions of temperature rather than entropy. The
chain rule is used to obtain the following expression for the additional
temperature to see later if the inequality of (5.3) is actually satisfied

Ta Z
T

cv

v

vT
½UeðT ; eeÞCUrðT ; rdÞ�: ð5:4Þ

For convenience, we use the following dimensionless form for the additional
temperature

~Ta Z
Ta

T0

: ð5:5Þ

In the elastic part of the internal energy, we allow the moduli, G and B, to
depend on temperature. In addition, we introduce a thermal strain, eT, so that
(3.1) is replaced with

UeðT ; eeÞZ 1
2 ½3BðTÞee : P s : ee C2GðTÞee : P d : ee�

ee Z eKepKeTðTÞ:

9>=
>; ð5:6Þ
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As specific forms for thermal dependence using the dimensionless temperature of
(4.1), we choose the following

B ZB0e
K~k ~T G ZG0e

K~k ~T eT ZaT0
~Ti; ð5:7Þ

in which ~k is a dimensionless material constant representing a measure of how
quickly the elastic moduli decay with temperature. B0 and G0 are the bulk and
shear moduli, respectively, at the reference temperature, and a denotes the usual
coefficient of thermal expansion and is assumed to be a constant. Conversions to
dimensionless forms follow

~B0 Z
B0

s
y
0

~G0 Z
G0

s
y
0

eT Z ~a ~Ti ~aZT0a: ð5:8Þ

Representative values for a and ~a are also given in table 1.
The flow stress of (3.8) is generalized as follows

syT Zs
yT
0 Cs

yT
h s

yT
h Zs

yT
m tanh z�e p

s
yT
0 Zs

y
a Cðsy

0 � s
y
a ÞeKk ~T s

yT
m Zs

y
me

Kk ~T

9=
;; ð5:9Þ

where the superscript T is added to emphasize the dependence on temperature.
For ~TZ0 the form reduces to that used previously with material constants
s
y
0 and s

y
m continuing to represent the initial yield stress and maximum

additional hardening stress, respectively. The rate of decay with temperature
has been assumed the same as that for the elastic moduli as simply a matter of
convenience. The limiting case of the flow stress for large temperature has been
chosen for a specific reason. High temperature is associated with the annihilation
of dislocations (annealing), a state at which most metals exhibit no hardening, a
feature provided by the assumed form for sm

yT. In addition some metals exhibit a
residual flow stress greater than zero but less than the initial flow stress, a feature
included here by adding one additional material constant called the athermal
stress, sa

y.
Again, dimensionless versions are obtained by using the yield stress, s0

y, at the
reference temperature as a normalizing factor

~sy
a Z

s
y
a

s
y
0

~sy
m h

s
y
m

s
y
0

~syTh
syT

s
y
0

Z ~syT
0 C ~syT

h

~syT
0 h

s
yT
0

s
y
0

Z ~sy
a Cð1K~sy

a ÞeKk ~T

~syT
h h

s
yT
h

s
y
0

Z ~sy
me

Kk ~Ttanh z�e p

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

: ð5:10Þ

As a generalization of (3.11), we allow Cd to depend on temperature with the
same exponential decay used previously and assume the dislocation internal
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energy to be

Ur ZCdðTÞ
ffiffiffiffiffi
~rd

q
CdðTÞZC0

de
K~k ~T ; ð5:11Þ

an expression that vanishes with large temperature. Note that we have reverted to
the original form for this contribution to the internal energy; the second
contribution could be generalized in a similar manner. The material parameter
Cd
0 is the value of Cd at the reference temperature. The use of (5.11) can be

considered an indirect way of representing annealing, rather than reducing
dislocation density. A development connecting a reduction of dislocation density
with temperaturemight be worthy of an independent study and is certainly beyond
the scope of this paper. The same equations as (5.11) in dimensionless form are

~U r Z ~C
0
de

K~k ~T
ffiffiffiffiffi
~rd

q
~C
0
d Z

C0
d

s
y
0

: ð5:12Þ

For vonMises plasticity with isotropic hardening, all aspects of the formulation go
through as developed previously. In particular, the choice of the evolution function,
m d, remains the one given in (3.10) so that the ‘effective’ dislocation density is the
temperature-dependent version of (3.13)

~�S
dT

Z z ~C
0
de

K~k ~T ½1Ktanh2z�e p�: ð5:13Þ
The form for b remains similar to (3.15) but is now also dependent on temperature

bT Z 1K
~�S
dT

~syT
: ð5:14Þ

If ~TZ0 when �e pZ0 then the beginning value for bT becomes b0Z1Kz ~C
0
d, similar

to the expression for the uncoupled theory. The plastic power and the dissipation
power are also similar in form to (2.18) and depend on temperature

~P
PT

Z _l~syT ~D
PT

Z bT ~P
PT

: ð5:15Þ
Since the two expressions in (5.15) do not represent total derivatives it is now
incorrect to refer to these quantities as dissipation rate and rate of plastic work.

The thermally-dependent dimensionless form for the first law given in (4.12)
becomes

_~T ZbTr y
c
_�e
p~syT: ð5:16Þ

The result is that a nonlinear ordinary differential equation must be solved for T.
The uncoupled case is recovered by setting ~kZ0.
(b ) Representative results

To illustrate the effects of coupling, we again provide plots of flow stress and
temperature as functions of effective plastic strain. However, instead of just z and
r c
y we have the additional parameters of ~k and ~sy

a whose effects must be
exhibited.

In figures 6 and 7, we show the effect of the decay parameter, ~k, on the flow
stress and the temperature, respectively, for ~sy

mZ0:5; zZ16 and ~sy
a Z1. Even

though the flow stress always hardens, the effect of temperature coupling is to
provide enhanced softening with increasing values of ~k. There is a slightly smaller
RSTA 20051585—24/8/2005—21:58—AMALI—163388—XML RSA – pp. 1–25

Phil. Trans. R. Soc. A



0

0.5

1.0

1.5

2.0

0.2 0.4 0.6
e p 

˜ s yT 
˜ k = 0 

1
2

3

˜ s m
y = 0.5 rc

y = 0.8

z = 16˜ s a
y =1.0

Figure 6. Flow stress versus effective plastic strain for the coupled theory when material properties
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increase in temperature for a given amount of plastic strain when the thermal
effects on material parameters is taken into account. Surprisingly, there is
practically no change of b with ~k so a plot is not shown.

If ~sy
a !1 then the flow stress may decay below the initial yield stress as shown

in figure 8.
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(c ) Additional temperature

Recall that we have assumed the additional temperature, Ta, to be much
smaller than the reference temperature. We are now in a position to obtain an
estimate for Ta and check the assumption.

In order to evaluate the relative significance of the terms in the equation, we
make the restriction of uniaxial stress so that the only non-zero stress, s, is
related to the elastic strain, ee, through Young’s modulus, E. With uniaxial
stress, and the assumed form of Mises plasticity, the axial plastic strain, ep, is
identical to the effective plastic strain. Therefore, the elastic internal energy and
constitutive relation reduce to

Ue Z
1

2
EðeeÞ2 sZEee ee Z eK�e pKeT: ð5:17Þ

The thermal dependence of Young’s modulus and the thermal strain are

~E Z ~E0e
Kk ~T eT Z ~a ~T ; ð5:18Þ

in which ~E is the normalized form of Young’s modulus, and ~E0 is its value at the
reference temperature, T0. Typical values for E0 are given in table 1. We separate
the contributions to the additional temperature into three parts according to the
individual sources

Ta ZT e
a CTa

a CTr
a ; ð5:19Þ

where Ta
a denotes the contribution from the thermal strain, Ta

E the part from
Young’s modulus, and Ta

r from the dislocation internal energy. With the use of
(5.4), these contributions are

Ta
a Z

T

cv

vUe

veT
veT

vT
TE

a Z
T

cv

vUe

vE

vE

vT
Tr

a Z
T

cv

vUr

vCr

vCr

vT
: ð5:20Þ
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In dimensionless form these equations become

~T
a

a ZKð1C ~TÞr y
c ~a~s ~sZ

s

s
y
0

~T
E
a ZKð1C ~TÞr y

c
~k ~U e

~U e Z
Ue

s
y
0

~T
r
a ZKð1C ~TÞr y

c
~k ~U r

~U r Z
Ur

s
y
0

9>>>>>>>>=
>>>>>>>>;
: ð5:21Þ

Next, we provide an order-of-magnitude analysis for these possible additions to
temperature. If sy

mZ0.5 then the upper bound to the yield stress and the stress is
~sUBZ1:5. Assume r y

c Z1, which appears to be an upper bound based on table 1.
Suppose further that the total strain is eZ0.5, which is approximately equal to
the total plastic strain. Since bT%1 the entropy temperature obtained from
(5.16) is bounded by

~T% �e~sZ ð0:5Þð1:5ÞZ 0:75: ð5:22Þ
The dimensionless coefficients of thermal expansion in table 1 are all less than
10K2. Therefore an estimate of the maximum value of additional temperature
due to the thermal strain is

~T
a

a ZKryc ~a~sð1C ~TÞzKð1Þð10K2Þð1:5Þð1:75ÞzK0:03; ð5:23Þ
an insignificant contribution.

To estimate the contribution due to the thermal dependence of Young’s
modulus on temperature, suppose kZ0.5. Then, for the dimensionless
temperature of (5.22) it follows that eK

~k ~TZ0:7. From table 1, an upper bound
for ~E0 is 10

3. An upper bound on the elastic strain is the maximum stress divided
by Young’s modulus or

ee Z ~smax= ~E Z ð1C ~sy
mÞ=ðeKk ~T ~E0ÞZ 1:5=ð0:7!103ÞZ 2!10K3: ð5:24Þ

Then

~T
e
a ZK1

2
r y
c
~k ~E0e

K~k ~TðeeÞ2ð1C ~TÞzK1

2
ð1:0Þð0:5Þð103Þð0:7Þð2!10K3Þð1:75Þ

ZK0:001; ð5:25Þ

a contribution even smaller than that due to the coefficient of thermal expansion.
Finally, we look at the potential additional temperature due to plastic strain.

From (5.12) the dimensionless dislocation internal energy is

~U r Z ~C
0
de

Kk ~Ttanh z�e p: ð5:26Þ
If zZ16 and �e pZ0:5, then it follows that tanh z�epZ1. If we choose b0Z0:5 and
since b0Z1Kz ~C

0
d, we obtain ~C

0
dZ0:03 and

~U rzð0:03Þð0:7Þð1ÞZ 0:02: ð5:27Þ
The predicted increase in temperature involving this term is

~T
r

a ZKr y
c
~k ~U rð1C ~TÞzKð1:0Þð0:5Þð0:02Þð1:75ÞZK0:02: ð5:28Þ
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At least for the chosen values of material parameters, this contribution is also
relatively insignificant and the assumption of (5.3) that TzTh indeed holds.
One side observation is that all three of the potential contributions are negative,
indicating that the predicted temperature excluding these terms will be on the
high side.

It should also be noted that the increment in temperature is negative for initial
elastic loading and positive for initial elastic unloading in agreement with the
experimental measurements of Pieczyska (1999). Here we have purposely
emphasized the regime of plastic deformations and considered the thermoelastic
effect to be neglible.
6. Summary

This paper provides a thermodynamically consistent formulation of conventional
plasticity constitutive equations with thermal effects included but under the
assumptions that heat conduction and external heat sources are negligible. The
formulation is motivated by the desire to emphasize the point made by Rosakis
et al. (2000) that b is not a constant, but rather, a function that follows from a
formulation that includes an additional term in the internal energy. The
formulation does not include many important factors such as a rigorous
treatment of large deformations, a general coupled form of the internal energy,
and thermal dependence of all material parameters.

Essential aspects of the development are the following:

(i) The formulation is based on the premise that, in addition to the usual
entropy and elastic contributions to internal energy, there should be a
contribution that depends on dislocation density.

(ii) With a suitable interpretation of internal variables, the formulation can
utilise equivalently either dislocation density or effective plastic strain.

(iii) The use of dislocation density as a primary variable allows the
representation for a partially-annealed metal through the choice of a
non-zero value for initial dislocation density.

(iv) The existence of the dislocation internal energy indicates that not all of
the plastic power contributes to dissipation and provides an explanation
for why a reduction factor (beta) is necessary in many elementary
formulations to obtain agreement with observed increases in tempera-
ture.

(v) Two elementary terms for the dislocation internal density provide the
capability for obtaining a wide range in forms for the function b.

(vi) The uncoupled formulation provides a very simple expression for
dissipation and, consequently, for increase in temperature.

(vii) The formulation is sufficiently simple so that it can be easily altered to
match experimental data giving b as a function of effective plastic strain.

(viii) For metals that exhibit a significant flow stress-dependence on strain
rate, there is a corresponding enhancement in the expression for
dissipation.

(ix) An assumption that the additional temperature is insignificant rendered
a coupled theory almost as simple as the uncoupled form. An a posterior
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argument indicates that the assumption may be plausible for many
problems.

(x) The coupled theory, not surprisingly, indicates that temperature
dependence provides a modified strain-hardening form of plasticity.
For certain values of material constants, strain softening is exhibited
with the resulting possibility of loss of ellipticity and ill-posedness
(Neilsen & Schreyer 1993).

In summary, a mathematical structure has been provided for a thermo-
dynamical treatment of plasticity that is theoretically rigorous, that is a natural
evolution from a widely-used engineering model of plasticity, and that offers a
suitable framework for describing the b-effect. The simplicity of the formulation
provides a basis for those new to the subject to understand and appreciate the
efforts of those who have made prior contributions to the field.
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